China Custom Chh-45ca Subtle Accuracy CNC Machine Long-Lived Linear Guide Rail

Product Description

Product Description

ZCF BRIEF INTRODUCTION:                                                                                       
ZCF PRECISION TECHNOLOGY(HangZhou) CO.,LTD. IS A PROFESSIONAL MANUFACTURER OFLINEARXIHU (WEST LAKE) DIS.,LINEAR MODULE AND BALL SCREW ETC.SHE IS LOCATED IN HangZhou CITY,ZheJiang ,CHINA.THE NEW FACTORY COVERS 33333 SQUARE CHINAMFG AND HOLDS A BUILDING AREA OF 16000 SQUARE CHINAMFG AT PRESENT. WITH OVER 10 YEARS’ EFFORT OF OUR WHOLE TEAM. AND ALSO TRUST AND SUPPORT FROM OUR RESPECTED CUSTOMERS. WE ARE SO LUCKY TO BECOME ONE STRONG BRAND IN CHINA, WHO MAKE INTERNATIONAL STHangZhouRD PRODUCTS.WE AIM SERVE CUSTOMERS WORLDWIDELY.

PRODUCTS PHOTOS:

CH SERIES BODY STRUCTURE:
 

1.ROLLING CYCLE SYSTEM: SLIDER, XIHU (WEST LAKE) DIS. RAIL, END COVER, STEEL BALL, BALL HOLDER;

2.LUBRICATION SYSTEM: OIL NOZZLE AND TUBING JOINT

3.DUST-PROOF SYSTEM: OIL SCRAPER, NEGATIVE DUST SEAL DUST-PROOF SHEET, XIHU (WEST LAKE) DIS. RAIL BOLT COVER, METAL SCRAPER

 

ACCURACY LEVEL
 

1. THE ACCURACY OF CH SERIES LINEAR XIHU (WEST LAKE) DIS.S CAN BE DIVIDED INTO FIVE LEVELS: COMMON, HIGH, PRECISION, SUPER-PRECISION AND ULTRA-PRECISION. CUSTOMERS CAN CHOOSE THE ACCURACY LEVEL ACCORDING TO THE ACCURACY REQUIREMENT OF EQUIPMENT.
 

2.  ACCURACY OF NON-INTERCHANGEABLE LINEAR XIHU (WEST LAKE) DIS.:

MODEL CH – 15, 20          unit : mm
ACCURACY LEVEL COMMON HIGH PRECISION HIGH-PRECISION ULTRA-PRECISION
(C) (H) (P) (SP) (UP)
TOLERANCE OF H ± 0.1 ± 0.03 0- 0.03 0- 0.015 0- 0.008
TOLERANCE OF N ± 0.1 ± 0.03 0- 0.03 0- 0.015 0- 0.008
TOLERANCE OF MUTUAL H 0.02 0.01 0.006 0.004 0.003
TOLERANCE OF MUTUAL N 0.02 0.01 0.006 0.004 0.003
MOTION PARALLELISM OF C ON A MOTION ACURACY
MOTION PARALLELISM OF D ON B MOTION ACURACY

 

3. MOTION ACCURACY CHART

RAIL LENGTH (mm) ACCURACY LEVEL (µm)
C H P SP UP
~ 100 12 7 3 2 2
100 ~ 200 14 9 4 2 2
200 ~ 300 15 10 5 3 2
300 ~ 500 17 12 6 3 2
500 ~ 700 20 13 7 4 2
700 ~ 900 22 15 8 5 3
900 ~ 1,100 24 16 9 6 3
1,100 ~ 1,500 26 18 11 7 4
1,500 ~ 1,900 28 20 13 8 4
1,900 ~ 2,500 31 22 15 10 5
2,500 ~ 3,100 33 25 18 11 6
3,100 ~ 3,600 36 27 20 14 7
3,600 ~ 4,000 37 28 21 15 7

SELECTION CRITERIA

1. PRODUCT APPLICATIONS:

1). CH SERIES: GRINDING MACHINE, MILLING MACHINE, LATHE, DRILLING MACHINE, INTEGRATED PROCESSING MACHINE, EDM MACHINE, BORING MACHINE, WIRE CUTTING MACHINE, PRECISION

2). CE SERIES: INDUSTRIAL AUTOMATION MACHINERY, SEMICONDUCTOR MACHINERY, LASER ENGRAVING MACHINE, PACKAGING MACHINE;

3). CGN/CGW SERIES: PRINTER, MACHINE ARM, ELECTRONIC INSTRUMENT AND SEMICONDUCTOR EQUIPMENT.

 

2. SELECTION OF ACCURACY LEVEL:

C, H, P, SP, UP LEVELS DEPEND ON EQUIPMENT ACCURACY REQUIREMENTS.
 

3. SELECTION OF SIZE:

1). ACCORDING TO EXPERIENCE;

2). LOAD STATUS;

3). IF LINEAR XIHU (WEST LAKE) DIS.WAY IS USED IN CONJUNCTION WITH BALL SCREW, SELECT SIMILAR SIZE AS EXTERNAL DIAMETER OF THE SCREW. IF THE EXTERNAL DIAMETER OF THE SCREW IS 35 MM, SELECT CH35.

 

4. CALCULATING THE MAXIMUM LOAD OF SLIDER:

1). CALCULATING THE MAXIMUM EQUIVALENT LOAD OF A SINGLE SLIDER WITH REFERENCE TO THE LOAD CALCULATION TABLE

2). CONFIRMATION THAT THE STATIC SAFETY FACTOR OF THE SELECTED STRAIGHT-LINE XIHU (WEST LAKE) DIS. SHOULD EXCEED THE VALUE LISTED IN THE TABLE OF STATIC SAFETY FACTOR

LUBRICATION:

IF THE LINEAR XIHU (WEST LAKE) DIS. IS NOT PROPERLY LUBRICATED, THE FRICTION OF ROLLING PARTS WILL INCREASE, AND LONG-TERM USE WILL BECOME THE MAIN REASON FOR SHORTENING THE LIFE. LUBRICANTS PROVIDE THE FOLLOWING FUNCTIONS:

(1). REDUCE FRICTION OF ROLLING PARTS, PREVENT BURNS AND REDUCE WEAR;

(2). FORMING OIL FILM BETWEEN ROLLING SURFACE AND ROLLING SURFACE CAN PROLONG ROLLING FATIGUE LIFE;

(3). PREVENTING RUST.

 

1. GREASE LUBRICATION:

EACH GROUP OF LINEAR XIHU (WEST LAKE) DIS.WAYS CAN BE SEALED WITH LITHIUM SOAP-BASED GREASE TO LUBRICATE THE BEAD GROOVE TRACK BEFORE LEAVING THE FACTORY. ALTHOUGH THE GREASE IS NOT EASY TO LOSE, IN ORDER TO AVOID INSUFFICIENT LUBRICATION CAUSED BY LUBRICATION LOSS, IT IS SUGGESTED THAT CUSTOMERS SHOULD SUPPLEMENT THE GREASE ONCE MORE WHEN THE DISTANCE REACHES 100 KM. AT THIS TIME, GREASE CAN BE INJECTED INTO THE SLIDER BY MEANS OF THE OIL NOZZLE ATTACHED TO THE SLIDER. LUBRICATING GREASE IS SUITABLE FOR SITUATIONS WHERE THE SPEED IS NOT MORE THAN 60 M/MIN AND THE COOLING EFFECT IS NOT REQUIRED.
T : OIL INJECTION FREQUENCY (hour);  Ve : SPEED (m/min)
 

2. OIL (OIL) LUBRICATION:

IT IS RECOMMENDED THAT CUSTOMERS USE LUBRICATING OIL WITH A CONSISTENCY OF ABOUT 32-150 CHINAMFG TO LUBRICATE LINEAR XIHU (WEST LAKE) DIS.S. CHINAMFG CAN INSTALL THE TUBING JOINT AT THE ORIGINAL POSITION OF THE OIL DISCHARGE NOZZLE ACCORDING TO THE CUSTOMER’S NEEDS, SO THE CUSTOMER ONLY NEEDS TO CONNECT THE PRESET TUBING OF THE MACHINE TO THE TUBING JOINT. THE LOSS OF LUBRICATING OIL IS FASTER THAN THAT OF LUBRICATING GREASE. WHEN USING, ATTENTION MUST BE PAID TO THE ADEQUACY OF OIL SUPPLY. IF INSUFFICIENT LUBRICATION EASILY CAUSES ABNORMAL WEAR OF LINEAR XIHU (WEST LAKE) DIS.S AND REDUCES THEIR SERVICE LIFE, IT IS SUGGESTED THAT THE FREQUENCY OF LUBRICATING OIL SHOULD BE ABOUT 0.3CM3/HR. CUSTOMERS CAN USE IT ACCORDING TO THEIR USE CONDITIONS. LUBRICATING OIL IS SUITABLE FOR VARIOUS LOADS AND SPEEDS, BUT IT IS NOT SUITABLE FOR HIGH TEMPERATURE LUBRICATION BECAUSE OF ITS VOLATILITY.

DUST-PROOF DEVICE(OPTIONS)
 

1. DUST-PROOF DEVICE CODE:

IF YOU NEED THE FOLLOWING DUST-PROOF EQUIPMENT, PLEASE ADD THE CODE AFTER THE PRODUCT MODEL.

INSTALLATION OF LINEAR XIHU (WEST LAKE) DIS.WAY

THE INSTALLATION METHOD OF LINEAR XIHU (WEST LAKE) DIS. MUST BE SET ACCORDING TO THE OPERATING CONDITION OF THE MACHINE, SUCH AS THE DEGREE OF VIBRATION AND IMPACT FORCE, THE REQUIRED WALKING ACCURACY AND THE LIMITATION OF THE MACHINE.WHEN PAIRING NON-INTERCHANGEABLE LINEAR XIHU (WEST LAKE) DIS.S, ATTENTION SHOULD BE PAID TO THE DIFFERENCE BETWEEN THE REFERENCE RAIL AND THE DRIVEN RAIL. THE ACCURACY OF THE DATUM LEVEL ON THE SIDE OF THE DATUM RAIL IS HIGHER THAN THAT OF THE DRIVEN RAIL, SO IT CAN BE USED AS THE SUPPORTING SURFACE FOR THE BED INSTALLATION. THE REFERENCE RAIL IS MARKED WITH MA, AS SHOWN IN THE FIGURE.

 

1. FIXING METHODS

WHEN THE BED IS SUBJECTED TO VIBRATION AND IMPACT FORCE, THE XIHU (WEST LAKE) DIS. RAIL AND SLIDER MAY DEVIATE FROM THE ORIGINAL FIXED POSITION AND AFFECT THE ACCURACY. IN ORDER TO AVOID SIMILAR SITUATION, IT IS SUGGESTED TO USE THE FOUR FIXED WAYS LISTED BELOW TO FIX THE XIHU (WEST LAKE) DIS. RAIL AND SLIDER TO ENSURE THE ACCURACY OF THE MACHINE.

 

2. INSTALLATION OF LINEAR RAIL:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Parts
Material: Steel
Structure: Machine Parts
Installation: All-Terrain Crane
Driven Type: N/a
Carrying Capacity: Weight Level
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

linear rail

Can you explain the role of linear rails in reducing friction and wear in linear motion applications?

Linear rails play a pivotal role in reducing friction and wear in linear motion applications through several key mechanisms:

  • 1. Precision Design: Linear rails are precision-engineered with specific profiles and tolerances. The precise design minimizes contact points between the rail and the carriage, reducing friction and wear to a minimum during linear motion.
  • 2. Rolling Contact: Many linear rails utilize rolling contact elements, such as recirculating ball bearings or roller bearings. These elements roll along the profiled surface of the rail, significantly reducing friction compared to sliding contact. Rolling contact also distributes the load evenly, further minimizing wear on specific points.
  • 3. Low-Friction Coatings: Some linear rails feature low-friction coatings on their surfaces. These coatings, often made of materials like Teflon or similar compounds, create a smooth and slippery surface, reducing the coefficient of friction. This results in smoother linear motion and less wear on the rail and carriage components.
  • 4. Lubrication: Proper lubrication is essential for reducing friction and wear in linear motion systems. Lubricants applied to the rolling elements or the rail surface create a thin film that separates the moving parts, minimizing direct contact and friction. Regular lubrication intervals are crucial for maintaining optimal performance and extending the lifespan of the linear rail system.
  • 5. Sealing Mechanisms: Linear rails often incorporate sealing mechanisms to protect against contaminants. Dust, debris, and moisture can contribute to increased friction and wear. Effective sealing prevents the ingress of contaminants, preserving the integrity of the rail and reducing wear on critical components.
  • 6. Material Selection: The choice of materials for both the rail and carriage components influences friction and wear. High-quality materials with good wear resistance, such as hardened steel or specialized alloys, contribute to the long-term durability of the linear rail system.
  • 7. Regular Maintenance: Implementing a regular maintenance schedule is crucial for reducing friction and wear. Inspections, cleaning, and lubrication ensure that the linear rail system operates smoothly and efficiently. Identifying and addressing any signs of wear early can prevent more significant issues and extend the overall lifespan of the system.

By incorporating these design features and maintenance practices, linear rails effectively minimize friction and wear in linear motion applications. This not only enhances the efficiency and accuracy of the system but also contributes to the long-term reliability and durability of the linear rail.

linear rail

What are the typical load capacities and travel distances for linear rails?

The load capacities and travel distances for linear rails vary based on the specific design, size, and application requirements. Here are general considerations:

Load Capacities:

  • Light-Duty Applications: Linear rails in smaller sizes may be suitable for light-duty applications with load capacities ranging from a few hundred pounds to a few thousand pounds. These are commonly used in applications like 3D printers and light-duty automation systems.
  • Medium-Duty Applications: Linear rails in medium sizes are designed for applications with moderate load requirements. Typical load capacities for medium-duty linear rails range from a few thousand pounds to tens of thousands of pounds. These are often used in CNC machines, robotic systems, and material handling equipment.
  • Heavy-Duty Applications: Larger linear rails are built for heavy-duty applications with substantial load requirements. Load capacities for heavy-duty linear rails can extend into the hundreds of thousands of pounds. These are employed in industrial machinery, aerospace testing equipment, and other heavy-duty applications.

Travel Distances:

  • Short-Range Travel: Some linear rails are designed for short-range travel, with typical distances ranging from a few inches to a few feet. These are suitable for applications with limited linear motion requirements, such as in certain types of printing machinery.
  • Medium-Range Travel: Linear rails for medium-range travel cover distances from a few feet to several feet. These are commonly used in applications like CNC machines and automation systems where moderate linear motion is required.
  • Long-Range Travel: Linear rails with long-range travel capabilities are designed for applications where extensive linear motion is necessary. These can cover distances ranging from several feet to meters and are used in applications such as large-scale industrial automation and material handling systems.

It’s essential to consult manufacturer specifications and consider factors such as speed, acceleration, and environmental conditions when selecting linear rails to ensure they meet the specific load and travel requirements of a given application.

linear rail

What are linear rails, and how are they used in linear motion systems?

Linear rails, also known as linear guides or linear slides, are mechanical components used in linear motion systems to facilitate smooth and precise movement along a straight path. They typically consist of a rail and a carriage. The rail is a long, rigid structure with a specially designed profile, while the carriage is mounted on the rail and holds the load to be moved.

Linear rails are widely used in various applications, including manufacturing machinery, robotics, 3D printers, and automated systems. They provide guidance and support to the moving components, minimizing friction and ensuring accurate and repeatable motion. The design of linear rails allows for high load-carrying capacity and can accommodate different types of loads, such as radial or axial loads.

Linear motion systems incorporating linear rails offer advantages such as improved precision, reduced wear and tear, and increased efficiency in comparison to traditional sliding mechanisms. The choice of linear rails depends on factors such as load capacity, speed, accuracy requirements, and environmental conditions in the specific application.

China Custom Chh-45ca Subtle Accuracy CNC Machine Long-Lived Linear Guide Rail  China Custom Chh-45ca Subtle Accuracy CNC Machine Long-Lived Linear Guide Rail
editor by Dream 2024-05-15